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Abstract
Genomic selection (GS) is used in many animal and plant breeding programs to

enhance genetic gain for complex traits. However, its optimal integration in clone

breeding programs, for example potato, that up to now relied on phenotypic selec-

tion (PS) requires further research. In this study, we performed computer simulations

based on an empirical genomic dataset of tetraploid potato to (i) investigate under a

fixed budget how the weight of GS relative to PS, the stage of implementing GS, the

correlation between an auxiliary trait and the target trait, the variance components,

and the prediction accuracy affect the genetic gain of the target trait, (ii) determine

the optimal allocation of resources maximizing the genetic gain of the target trait, and

(iii) make recommendations to breeders how to implement GS in clone and especially

potato breeding programs. In our simulation results, any selection strategy involving

GS had a higher short-term genetic gain for the target trait than Standard-PS. In addi-

tion, we showed that implementing GS in consecutive selection stages can largely
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enhance short-term genetic gain and recommend the breeders to implement GS at

single hills and A clone stages. Furthermore, we observed for selection strategies

involving GS that the optimal allocation of resources maximizing the genetic gain of

the target trait differed considerably from those typically used in potato breeding pro-

grams and, thus, require the adjustment of the selection and phenotyping intensities.

The trends are described in our study. Therefore, our study provides new insight for

breeders regarding how to optimally implement GS in a commercial potato breeding

program to improve the short-term genetic gain for their target trait.

1 INTRODUCTION

Potato (Solanum tuberosum L.) is with respect to the pro-

duction volume one of the most important food crops in the

world after sugarcane, maize, wheat, and rice (http://www.

fao.org/faostat/en/). However, in contrast to other crops, only

a low genetic gain was observed for yield in the past decades

(Stokstad, 2019; Ortiz et al., 2022). The selection gain is, com-

pared to the one in homozygous diploid species, limited by the

high heterozygosity and tetraploidy of potato (Lindhout et al.,

2011; Jansky et al., 2016). In addition, potato has a low mul-

tiplication coefficient (Grüneberg et al., 2009), which leads

to the availability of only one or few tubers per genotype for

phenotypic evaluation at early stages in the breeding program

(Gopal, 2006). This delays the evaluation of traits related to

productivity (such as tuber yield) or quality, as they rely on

multi-location field trials and/or destructive assessment, and

these can only be performed after one to several multiplica-

tion steps. As a consequence, only traits which can be assessed

based on a low number of plants can be considered in the

early stages of potato breeding programs. In contrast, target

traits whose evaluation requires many plants and/or environ-

ments can only be selected for in later stages of the breeding

program. Instead, early indirect selection on the auxiliary trait

can be performed. However, the correlation between the latter

and the target trait shows a high range of variability depend-

ing on the considered traits, and can even be negative. This

can limit the benefit of the early indirect selection on the

auxiliary trait. Furthermore, the evaluation of target traits in

potato is more expensive compared to their evaluation in non-

clonal crops as a considerably lower level of mechanization

is currently possible. Therefore, clone and especially potato

breeding programs would highly benefit from the possibil-

ity to select for target traits at early stages of the breeding

program, for example, with the implementation of genomic

selection (GS).

GS proved to enhance genetic gain for complex traits in

both animal and plant breeding programs (Meuwissen et al.,

2001; Desta & Ortiz, 2014). This is because GS allows to

predict the performance of target traits without phenotypic

evaluation in early stages. The selection on target traits at

early stages using estimated genetic values (EGV) avoids dis-

carding those individuals with desirable alleles for the trait,

which will increase the genetic gain per year. In addition,

the performance prediction of target traits without pheno-

typic evaluation in early stages has the potential to reduce the

length of the breeding cycle. One parameter that influences

the potential of GS is the prediction accuracy.

Several empirical studies have explored the potential of

implementing GS in potato breeding for different traits by

determining the prediction accuracy (Slater et al., 2016; Sver-

risdóttir et al., 2017; Enciso-Rodriguez et al., 2018; Endelman

et al., 2018; Stich & Van Inghelandt, 2018; Sverrisdóttir et al.,

2018; Caruana et al., 2019; Byrne et al., 2020; Gemenet et al.,

2020; Sood et al., 2020; Wilson et al., 2021). Different degrees

of prediction accuracies from low to high depending on the

studied traits have been reported, which could be caused by

the different genetic architectures, prediction models, but also

the considered genetic material. However, only few studies

evaluated the effect of GS on the genetic gain for the stud-

ied traits. One of them was Slater et al. (2016), who estimated

that the genetic gain after implementing GS for complex traits

was higher than that of phenotypic selection (PS). The results

of Stich and Van Inghelandt (2018) suggested that for some

traits GS leads to a higher gain of selection than PS even

without reducing the cycle length. However, no earlier study

considered directly the aspect that PS and GS need to be com-

pared at a fixed budget. Furthermore, when implementing GS

in a clone breeding program, the selected proportion of PS

on the early trait will be partially shifted to GS on the tar-

get trait. This shift can be realized to different degrees and

the resulting selected proportion for PS or GS might influ-

ence the efficiency of the selection strategy. Therefore, for the

implementation of GS in clone breeding programs not only

the prediction accuracy of the GS model but also its relative

weight to PS has to be examined. Furthermore, these aspects

are influenced by the correlation between the early and the tar-

get trait and also the variance components of the considered

trait have an influence on the genetic gain. However, the influ-

ences of these parameters and their interaction on the genetic

gain in clone breeding programs have not been investigated

until now.
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Werner et al. (2023) investigated different strategies to

implement GS in clone breeding programs exemplarily with

genome parameters of strawberry. They evaluated the per-

formance of a breeding program that introduced GS in the

first clonal stage and mainly focused on how to select par-

ents for the next crosses and drive population improvement to

enhance long-term genetic gain. However, in a classical clone

breeding program, there are several stages where GS could be

implemented and their effect on the gain of selection have not

been studied so far.

Another aspect that needs to be decided during the imple-

mentation of GS in clone or potato breeding programs is the

number of stages in which GS is applied. Once the clones are

genotyped for the first GS application, the possibility of re-

using the same EGV to perform GS in two or more stages is

given. A similar idea was proposed by Spindel et al. (2015) for

a rice breeding program but has neither been assessed by the-

oretical considerations nor by computer simulations nor any

empirical experiments. To the best of our knowledge, no ear-

lier study has investigated at which stage and in how many

selection stages GS should be implemented in clonal crops to

maximize the short-term genetic gain under a given budget.

Optimum allocation of resources under a given budget

is essential to improve the efficiency of breeding programs

(Longin et al., 2006). However, most studies on the imple-

mentation of GS in breeding programs neglected this effect.

Longin et al. (2015) and Marulanda et al. (2016) assessed this

point for cereal breeding programs. However, to the best of

our knowledge, no earlier study is available about the effect

of the implementation of GS on the optimum allocation of

resources in clone breeding programs.

The objectives of this study were to (i) investigate under a

fixed budget how the weight of GS relative to PS, the stage

of implementation of GS, the correlation between traits (aux-

iliary trait assessed in early generations and target trait), the

variance components, and the prediction accuracy affect the

short-term genetic gain of the target trait in potato breeding

programs compared to PS, (ii) determine the optimal alloca-

tion of resources maximizing the short-term genetic gain of

the target trait in each selection strategy and for varying cost

scenarios, and (iii) make recommendations to breeders how

to implement GS in clone breeding programs.

2 MATERIALS AND METHODS

2.1 Empirical basis of the computer
simulations

Our simulations were based on an empirical genomic dataset

of tetraploid potato. This empirical genomic dataset com-

prised 19,649,193 sequence variants revealed in a diver-

sity panel of 100 tetraploid potato clones (Baig et al. in

Core Ideas
∙ Genomic selection strategies can improve the

genetic gain of clone breeding programs versus

phenotypic selection.

∙ Implementing genomic selection in consecutive

selection stages can largely enhance short-term

genetic gain.

∙ Optimal implementation of genomic selection

requires changes in the allocations of resources.

preparation). The unphased sequence variants included sin-

gle nucleotide polymorphism (SNP) and insertion/deletion

(InDel) polymorphisms. Sequence variants with a minor allele

frequency <0.05 and missing rate >0.1 were removed. The

100 clones were used as parents of the simulated progenies

and will be called parental clones hereafter.

The progenies were simulated using AlphaSimR (Gaynor

et al., 2021). For this, the genetic map information of all

genomic variants was estimated using a Marey map (for

details see Method S1 and Figure S1). Subsequently, the

genomic information for each variant served as input for

the simulations.

2.2 Simulation of initial population

To stick to the size of commercial breeding programs (Breed-

ers personal communication, Table 1) an initial population of

300,000 clones was simulated like described here under. From

all possible crosses in the half-diallel among the 100 parental

clones, 300 were randomly selected. For each of these 300

crosses, 1000 F1 progenies were simulated using AlphaSimR.

The two steps of this procedure (the random selection of 300

crosses and the simulation of their progenies) were repeated

1000 times independently.

2.3 Simulation of true genetic and
phenotypic values

2.3.1 Target trait (Tt)

In our study, a genetically complex target trait representing

the weighted sum of all market relevant quantitative traits

was considered and will be named Tt hereafter. A random

set of 2000 sequence variants were considered as quantitative

trait loci (QTL) for Tt . The true additive effects of the 2000

[Correction added on 25 May 2023, after first online publication: Sen-

tence changed from “...was repeated 1000 times independently.” to “...were

repeated 1000 times independently.”]
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T A B L E 1 Dimensioning of a standard potato breeding program that exclusively relies on phenotypic selection.

Stage Number of clones Number of locations Phenotyping cost per clone and plot (€ ) Cost per stage (€ )
Seedling 300,000 1 1.4 420,000

Single hills 100,000 1 1.4 140,000

A clone 10,000 1 1.4 14,000

B clone 1500 2 25 75,000

C clone 300 3 25 22,500

D clone 60 4 25 6000

Sum 677,500

QTL were drawn from a gamma distribution (cf. Hayes &

Goddard, 2001) with 𝑘 = 2 and θ = 0.2, where 𝑘 and θ are

shape and scale parameters, respectively. To control the

degree of dominance δ between 0 and 1 for each QTL, the

ratios of dominance to additive effect were produced from

a beta distribution with the two shape parameters 𝑎 = 2 and

𝑏 = 2. The true dominance effect at each QTL was then

calculated by multiplying the true additive effect by the QTL

specific δ (Figure S2). For each QTL, all possible genotype

classes were AAAA, AAAB, AABB, and BBBB, which were,

respectively, coded from 0, 1, 2, 3, and 4 for additive effect;

and 0, 1, 1, 1, and 0 for dominance effect. Finally, the true

genetic value for Tt (TGVTt ) was calculated for each clone

by summing up the true additive and dominance effects at the

2000 QTL.

In order to simulate phenotypic values, two ratios of vari-

ance components (VC) were assumed for Tt : σ2𝐺 ∶ σ2
𝐺×𝐿 ∶

σ2ϵ = 1 ∶ 1 ∶ 0.5 (VC1) and 1 ∶ 0.5 ∶ 0.5 (VC2), where σ2
𝐺

denoted the genotypic variance, σ2
𝐺×𝐿 the variance of interac-

tion between genotype and location, and σ2ϵ the error variance.

The genotypic variance was estimated by the sample vari-

ance of TGVTt in the initial population. The phenotypic value

for the target trait was then calculated as PTt = TGVTt + ϵTt ,
where ϵTt was the non-genetic value following a normal

distribution 𝑁(0, σ2ϵTt
), with

σ2ϵTt
=

σ2
𝐺×𝐿
L𝑗

+
σ2ϵ

L𝑗R𝑗

(1)

representing the non-genetic variance, in which L𝑗 was the

number of locations at stage 𝑗, and R𝑗 the number of repe-

titions at stage 𝑗. We set the number of replications to one

(R𝑗 = 1) in each location (cf. Melchinger et al., 2005).

2.3.2 Phenotypic trait assessed in early
generations of the breeding program (Ta)

The weighted sum of the auxiliary traits measured in the

first three generations of the breeding program will be

referred to as Ta hereafter. To control the genetic corre-

lations between Ta and Tt (r), the true genetic values for

Ta were generated by TGVTa = TGVTt + ϵr , where ϵr was

the residual value following a normal distribution 𝑁(0, σ2ϵr ),
with

σ2ϵr =
1

𝑛 − 2
1 − r2

r2

𝑛∑

𝑖=1
(TGVTt(i) − TGVTt )

2 (2)

determined by the degree of r, where 𝑛 was the number of

clones for the initial population, TGVTt(i) the TGV for Tt of

the 𝑖th clone, and TGVTt the average of TGVTt in the initial

population. Then, the phenotypic value for Ta was calculated

as PTa = TGVTa + ϵTa , where ϵTa was a non-genetic value

following a normal distribution 𝑁(0,
1−𝐻2

Ta
𝐻2

Ta
σ2
𝐺Ta

), in which

𝐻2
Ta

was the broad-sense heritability for Ta, and σ2
𝐺Ta

the

genetic variance of Ta and estimated by the sample variance

of TGVTa in the initial population. In this study, 𝐻2
Ta

was set

as 0.6.

2.4 Simulation of estimated genetic values

In this study, we assumed that a GS model was trained

for Tt on earlier cycles of the breeding program, and that

this model has the prediction accuracy PA. The estimated

genetic values (EGV) of Tt obtained from the GS model

were estimated by EGVTt = TGVTt + ϵPA, where ϵPA was

the residual value following a normal distribution 𝑁(0, σ2ϵPA),
with

σ2ϵPA = 1
𝑛 − 2

1 − PA2

PA2

𝑛′∑

𝑖=1
(TGVTt(i) − TGVTt )

2 (3)

determined by the level of PA, where 𝑛′ was the number of

genotyped clones (= NGS), TGVTt(i) the TGV of the target

trait at the 𝑖th genotyped clone, and TGVTt the average of

TGVTt on all NGS genotyped clones.
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WU ET AL. 5 of 14The Plant Genome

F I G U R E 1 The standard clone breeding program examined in this study that relies exclusively on phenotypic selection. 1–p5 are the selected

proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single

hills, A, B, C, and D clones. Ta represented the integral of early measured traits and Tt the integral of the target traits. The yellow marked stages are

those that were examined in our study.

2.5 Selection strategies

2.5.1 Standard breeding program

A standard potato breeding program relying exclusively on

PS (Standard-PS) was considered as benchmark (Figure 1).

To simplify the comparison between PS and GS strategies,

we considered in this study six testing stages in the potato

breeding program. The six testing stages were seedling, sin-

gle hills, and A, B, C, and D clone stages, abbreviated in

the following as SL, SH, A, B, C, and D, respectively. The

number of tested clones (N) and locations (L) for each test-

ing stage are shown in Table 1. The selected proportions from

SL to SH (p1), SH to A (p2), A to B (p3), B to C (p4), and

C to D (p5) were set to
1
3 , 0.1, 0.15, 0.2, and 0.2, respec-

tively, as estimates from typical commercial potato breeding

programs (Breeders personal communication). The selection

in the early stages (SL, SH, and A) was based on the pheno-

typic value of the auxiliary trait PTa , and for the late stages

(B, C, and D) on the phenotypic value of the target trait PTt
(Figure 1).

2.5.2 Breeding programs involving genomic
selection

Three GS strategies were evaluated in which GS was imple-

mented at the (1) seedling, (2) single hills, and (3) A clone

stage, abbreviated as GS-SL, GS-SH, and GS-A, respectively.

All selection steps of the GS strategies were similar to those

of the standard breeding program except the following modi-

fications (Figure 2). Here, the strategy GS-SL will be taken
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6 of 14 WU ET AL.The Plant Genome

F I G U R E 2 Graphical illustration of the standard as well as the six selection strategies that include genomic selection that were examined in

our study. 1–p5 are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D

represent the stages of seedling, single hills, A, B, C, and D clones. α𝑘 is the proportion of clones selected by PS to be genotyped in stage 𝑘 and N𝑘 is

the number of clones of the respective stage.

as an example for the description. In the seedling stage,

N1 clones were evaluated for PTa . From these N1 clones,

the NGS ones with a higher PTa were genotyped. α1 was

defined as ratio of NGS to N1, that is, the proportion of

clones selected by PS to be genotyped. Then, N2 clones were

selected based on the EGVTt in the NGS genotyped clones

for the single hills stage. Afterward, the selection process in

the following stages was the same as in Standard-PS. For the

other two GS strategies, GS-SH and GS-A, the selection was

performed accordingly. For each stage 𝑘 in which GS was

applied, the corresponding α𝑘 was larger than p𝑘, where p𝑘
(= N𝑘

N𝑘+1
) was the selected proportion between the two stages

to which GS was applied. 𝑘 was set to 1, 2, and 3 for the

strategies (1) GS-SL, (2) GS-SH, and (3) GS-A, respectively

(Figure 2).

To evaluate whether adopting the same GS model for selec-

tion on Tt in several stages improves the short-term genetic

gain compared to using GS only once, we evaluated three

additional strategies (Figure 2):

(4) GS-SL:SH—GS was applied not only at seedling stage

but also at single hills stage;

(5) GS-SH:A—GS was applied not only at single hills stage

but also at A clone stage; and

(6) GS-SL:SH:A—GS was applied at seedling, single hills,

and A clone stages.

For these three GS strategies, genotyping of NGS clones

only took place when GS was used for the first time. When GS

was used a second or third time, the same EGVTt for the tested

clones from the initial GS model were used for the selection.

2.6 Economic settings and additional
quantitative genetic parameters

In this study, the costs for phenotypic evaluation of Ta and

Tt in one environment were assumed to be 1.4 and 25 €,

respectively. The costs for genotypic evaluation per clone

were assumed as 25 € (Table 1). To compare the short-term

genetic gain of Tt (Δ𝐺) between Standard-PS and several GS

strategies, the budget across different selection strategies was

fixed to 677,500 €. Therefore, the number of tested clones

in seedling stage (N1) must be adjusted/reduced when intro-

ducing GS into a breeding program to compensate for the

additional genotyping cost. In the first part of the simulations,

the selected proportions were fixed to those of Standard-PS.

This was realized in our study by randomly sampling the

reduced N1 from the initial population with an equal sample

size for each cross population.

We were interested in how different values of r, PA, VC,

and L influence Δ𝐺. Therefore, three different levels of r (-

0.15, 0.15, and 0.3), PA (0.3, 0.5, and 0.7), and two different

ratios of VC for Tt (see above) were examined in our simula-

tions. The selection of clones based on Tt that was assessed

in field experiments in more than one location happened at

B and C clone stages. Thus, we varied the number of loca-

tions from 2 to 4 and 3 to 6 in increments of 1 for B and C

clone stages, respectively, and designated them as L4 and L5.

Furthermore, to investigate how different levels of α𝑘 affect

Δ𝐺, we varied α𝑘 from 0.4 to 0.9 in increments of 0.1 for the

strategies GS-SL, GS-SL:SH, and GS-SL:SH:A, and from 0.2
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to 0.9 in increments of 0.1 for the other strategies.Δ𝐺 was cal-

culated as the difference in mean genetic values of Tt between

the D clone and the seedling stage (cf. Longin et al., 2015;

Marulanda et al., 2016).

2.7 Optimum allocation of resources

In the below described simulations, we relaxed the restric-

tions of the above described simulations that the selected

proportions were fixed to those of Standard-PS. To determine

the optimum allocation of resources maximizing Δ𝐺 under a

given budget, a general linear cost function to aggregate all

costs across all stages in the breeding program was created:

Budget =
6∑

𝑗=1
N𝑗 × costpheno(𝑗) × L𝑗 + NGS × costgeno

=
5∑

𝑗=1

N6

Π5
𝑘=𝑗p𝑘

costpheno(𝑗)L𝑗 + N6costpheno(6)L6

+
N6costgenoα𝑚

Π5
𝑘=𝑚p𝑘

,

(4)

where 𝑁𝑗 was the number of clones at stage 𝑗, costpheno(𝑗)
the cost for phenotypic evaluation at stage 𝑗, NGS the num-

ber of genotyped clones, and costgeno the genotyping cost (for

details see Method S2). In addition, p𝑘 was the selected pro-

portion from stage 𝑗(𝑚) to stage 𝑗(𝑚) + 1, where 𝑚 was the

stage in which GS was applied first. For more details, 𝑚 = 1
referred to GS-SL, GS-SL:SH, and GS-SL:SH:A; 𝑚 = 2 for

GS-SH and GS-SH:A; and 𝑚 = 3 for GS-A. The GS strate-

gies with optimum allocation of resources will be named

Optimal-GS hereafter.

The optimum allocation was determined by a grid search

across the permissible space of p2 to p5 and α𝑘 for a set of

given input parameters. The latter included the number of

tested clones at D clone stage (N6), the GS strategy, the phe-

notyping and genotyping costs, L, r, VC of Tt , 𝐻
2
Ta

, and the

total budget. We set N6 to 60. In the grid search, any p𝑘 var-

ied between 0.1 and 0.5 in increments of 0.05 to avoid too

strong/weak selections. α𝑘 was chosen as described above.

Consequently, in each permissible allocation, p1 was com-

pletely determined by Equation (4) under the constrained

budget and the given input parameters. Subsequently, the

mean genetic gain across 1000 simulation runs was cal-

culated for each permissible allocation of the grid search.

To obtain reliable estimates of the optimal allocation of

resources, we performed a least significant difference (LSD)

test on Δ𝐺 across all permissible allocations of the grid

search within a specific scenario. We selected the signifi-

cant group showing the maximum Δ𝐺 among all permissible

sets and then considered the average of the allocations as

optimal result.

The above described simulations required for some grid

search sets (those with low p1 to p3 but high p4 and p5) with

more than 300,000 clones in the seedling stage. Thus, the size

of the initial population was increased to 900,000 clones.

To investigate whether an increase of phenotyping cost of

Ta and the genotyping cost have an influence on the optimal

allocation of resources, we considered three different pheno-

typing costs for Ta (0.7, 1.05, and 1.4 €), and three different

genotyping costs (15, 25, and 40 €).

3 RESULTS

The mean genetic gain (Δ𝐺) and genetic variance (σ2
𝐺

) of

the target trait at D clone were assessed considering different

values of r, PA, α𝑘, as well as different selection strategies.

To easily compare among the examined strategies, the bud-

get, the selection proportion between stages p1–p5 and the

number of test locations were fixed according to those of the

Standard-PS strategy.

Increasing r and PA either individually or simultaneously

led to a higher Δ𝐺 (Figure 3 and Figure S3). Regardless of

PA and r, any selection strategy incorporating GS was supe-

rior to the Standard-PS strategy with respect toΔ𝐺 (Figure 3).

Low or negative values for r and high PA increased this ten-

dency even more. The least improvement of Δ𝐺 relative to

Standard-PS was observed across all scenarios for the strategy

GS-SL. The strategies GS-A and GS-SH resulted in consid-

erably higher values for Δ𝐺 relative to PS and under the

scenarios with low r but high PA, the latter strategy was

significantly superior to the former.

Implementing GS in successive stages (GS-SL:SH, GS-

SH:A, and GS-SL:SH:A) had an advantage over the strategies

using GS one time, except for the scenario with the lowest PA

(=0.3) but the highest r (=0.3). The ranking of performance

among these strategies was GS-SL:SH:A > GS-SH:A > GS-

SL:SH. The difference among these strategies was lower, if r

increased or PA decreased.

For all GS strategies, higher α𝑘 values led to reductions

in the number of clones available in the seedling stage

(Figure S4), but increased Δ𝐺 (Figure 3). For all except eight

scenarios, the highest Δ𝐺 was observed if α𝑘 was at its max-

imum (0.9). The remaining scenarios in which the maximum

Δ𝐺 were observed for α𝑘=0.7 or 0.8 instead of 0.9, how-

ever, showed Δ𝐺 values that were not significantly different

from the Δ𝐺 values observed for α𝑘=0.9 (data not shown).

Only for GS-SL:SH:A an exception was observed from this

trend, namely that the maximal Δ𝐺 was observed for α𝑘=0.5

for the scenario with r=0.3 and PA=0.3. In accordance with

the above described observations regarding the differences

among selection strategies, also the differences amongΔ𝐺 for
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8 of 14 WU ET AL.The Plant Genome

F I G U R E 3 Genetic gain (Δ𝐺, left) and genetic variance (σ2
𝐺

, right) for the target trait on average across 1000 simulation runs at D clone stage

for different weights of genomic selection (GS) relative to phenotypic selection (α𝑘), different selection strategies, different correlations between the

traits (r = -0.15, 0.15, and 0.3), prediction accuracies (PA = 0.3, 0.5, and 0.7), and for the ratio of variance components VC1

(σ2
𝐺
∶ σ2

𝐺×𝐿 ∶ σ2ϵ = 1 ∶ 1 ∶ 0.5) The details regarding the selection strategies are shown in Figure 2.

the different levels of α𝑘 were low for the scenarios with high

r and/or low PA.

In all the above described simulations of the selection

strategies that exploit GS in several stages, α𝑘 was the same

for each stage in which GS was applied. However, for these

strategies, we also evaluated whether varying α𝑘 had an influ-

ence on Δ𝐺. For the strategies GS-SL:SH and GS-SH:A, a

higher Δ𝐺 was observed with an increase of both α𝑘 val-

ues (that is, α1 and α2 or α2 and α3) (Figure S5). The

combination of two α𝑘 values that resulted in the highest

Δ𝐺 was 0.84 and 0.79 or 0.86 and 0.86 for the respective

strategies. A similar trend was observed for GS-SL:SH:A

(Figure S6). However, for the scenarios with high r (=0.3),

intermediate values of α1 were sufficient to result with high

values of α2 and α3 in the maximal values of Δ𝐺 of 0.4–0.5

(Table S1).

The effect of variation of selection strategies, α𝑘, r, and

PA on the genetic variance were opposite to their effect on

genetic gain (Figure 3). The scenarios with a higher genetic

gain showed a lower genetic variance.

We also investigated the effects of different ratios of vari-

ance components (VC1 and VC2) and number of locations

for phenotypic evaluation (L4 and L5) on Δ𝐺. The ranking of

the selection strategies with respect to Δ𝐺 was not affected

by the studied ratios of VC (Figure 3 and Figure S7). When

σ2
𝐺×𝐿 was halved (i.e., VC2 vs. VC1), Δ𝐺 increased from

3% to 8% depending on the selection strategies, PA, r, and

α𝑘 (Figure S8). Although increasing L caused a decrease in

the number of clones that are available at the seedling stage

to compensate for additional phenotyping costs, Δ𝐺 signifi-

cantly increased with increasing number of locations that were

used for the evaluation of B and C clones (Figure 4). This trend

was independent of selection strategies, PA, r, and α𝑘. In all

scenarios, the highestΔ𝐺 was observed with the highest num-

ber of locations in the B and C clone stages, that is, L4 = 4 and

L5 = 6. In these cases, Δ𝐺 was increased by 8% compared to

Standard-PS with (L4,L5) = (2, 3).
The optimal allocation of resources was assessed via a

grid search across p1–p5 and α𝑘, 𝑘 ∈ [1, 3] in a scenario with

VC1, budget, L, and N6 as in the Standard-PS scenario. The

optimum allocation of resources led also for the PS to an

increase of Δ𝐺 (Optimal-PS) compared with the Standard-

PS (Figure 5). On average across all evaluated scenarios, the

strategy GS-SL had the worst performance out of the strate-

gies incorporating GS. In a scenario with r < 0 and PA >

0.5, any selection strategy with GS revealed a higher Δ𝐺
than the Optimal-PS. The strategy GS-SL:SH:A only outper-

formed the other selection strategies if r = -0.15. In contrast,

the strategy GS-SH:A or GS-A resulted in the highest Δ𝐺 if

r was >-0.15. On average across all the examined scenarios,

the strategy GS-SH:A resulted in the highest and most stable

Δ𝐺 values.

With the exception of one specific scenario, a high α𝑘 was

required for each selection strategy to reach the maximal Δ𝐺
value (Table 2, Tables S2 and S3). This exception was the

strategy GS-SL in case of a positive r for which α𝑘 rang-

ing from 0.21 to 0.61 resulted in the maximal Δ𝐺 values.

Furthermore, to achieve maximum Δ𝐺 values, the selected

proportions for the last two stages (p4 and p5) were low (0.17)

on average across all scenarios. The level of the optimal p𝑘

 19403372, 2023, 2, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20327 by M

PI 328 Plant B
reeding R

esearch, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WU ET AL. 9 of 14The Plant Genome

F I G U R E 4 Genetic gain for the target trait (Δ𝐺) on average across 1000 simulation runs at the D clone stage for six different selection

strategies with genomic selection (GS) for varying numbers of locations in the B and C clone stages (L4 and L5) and different weights of genomic

selection (GS) relative to phenotypic selection (α𝑘) when the correlation between the two traits was set to 0.15 and prediction accuracy was set to 0.5.

F I G U R E 5 Genetic gain of the target trait (Δ𝐺) after optimally allocated resources for different correlations between the traits (r = -0.15, 0.15,

and 0.3) and different prediction accuracies (PA = 0.3, 0.5, and 0.7). The presented Δ𝐺 values are the average of the genetic gains from the grid

search sets that revealed no significant (𝑝 < 0.05) difference compared to the set with maximum genetic gain.

was influenced by the level of r as well as by the stage in

which GS was implemented. In general, high optimal p1 val-

ues were observed with a negative correlation in comparison

with the scenarios with a positive correlation. Furthermore,

we observed for all strategies with implementation of GS that

the selection proportion for that stage in which GS was applied

was lower than the one observed at the same stage in the other

strategies. This trend was more pronounced for scenarios with

high PA. For instance, p2 (p3) for the strategy GS-SH (GS-A)

was on average across all scenarios about 0.25 (0.21) lower

than the one for the strategies excluding GS-SH (GS-A) with

0.42 (0.45).

The effects of different phenotyping and genotyping

costs on the maximum Δ𝐺 were assessed exemplarily for
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10 of 14 WU ET AL.The Plant Genome

T A B L E 2 Optimum allocation of resources to maximize genetic gain of the target trait (Δ𝐺) for the different selection strategies and

correlations between the two traits (r = -0.15, 0.15, and 0.3). The prediction accuracy was 0.5 and the phenotyping cost of early measured trait 1.4

€ and genotyping cost 25 €. p1 to p5, α𝑘, and N1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic

selection, and the number of clones at the seedling stage, respectively. For description of selection strategies see text.

Correlations Selection strategies 𝚫𝑮 𝟏
𝑺𝑫𝚫𝑮

𝟐 p𝟏 p𝟐 p𝟑 p𝟒 p𝟓 𝛂
𝒌

N𝟏

−0.15 PS 57.87 (g) 5.04 0.39 0.36 0.31 0.10 0.10 - 152,995.09

GS-SL 58.86 (f) 5.18 0.30 0.50 0.50 0.16 0.23 0.87 23,709.50

GS-SH 61.38 (e) 5.56 0.44 0.29 0.50 0.13 0.19 0.88 43,099.80

GS-A 63.43 (c) 5.88 0.46 0.48 0.21 0.10 0.20 0.90 67,708.00

GS-SL:SH 62.61 (d) 5.71 0.38 0.45 0.50 0.17 0.21 0.90 22,501.43

GS-SH:A 64.70 (b) 6.03 0.48 0.38 0.37 0.14 0.19 0.90 40,018.33

GS-SL:SH:A 66.05 (a) 6.22 0.43 0.47 0.47 0.16 0.20 0.90 21,914.47

0.15 PS 67.54 (b) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06

GS-SL 64.82 (d) 6.06 0.16 0.50 0.50 0.16 0.21 0.40 50,256.67

GS-SH 67.79 (b) 6.44 0.24 0.23 0.50 0.16 0.19 0.74 93,815.07

GS-A 70.18 (a) 6.75 0.32 0.45 0.19 0.13 0.18 0.82 108,386.59

GS-SL:SH 66.19 (c) 6.21 0.39 0.44 0.50 0.16 0.20 0.86 23,237.68

GS-SH:A 69.96 (a) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54

GS-SL:SH:A 67.76 (b) 6.50 0.41 0.46 0.46 0.16 0.21 0.86 23,206.52

0.3 PS 71.42 (b) 7.05 0.23 0.39 0.42 0.10 0.10 - 178,386.46

GS-SL 68.24 (d) 6.54 0.13 0.49 0.49 0.17 0.20 0.28 65,661.65

GS-SH 71.31 (b) 6.94 0.17 0.18 0.49 0.18 0.21 0.66 135,331.14

GS-A 73.43 (a) 7.18 0.22 0.41 0.16 0.17 0.19 0.77 159,402.35

GS-SL:SH 67.79 (d) 6.46 0.33 0.39 0.49 0.18 0.21 0.68 30,172.78

GS-SH:A 73.12 (a) 7.15 0.13 0.37 0.37 0.17 0.19 0.86 123,779.24

GS-SL:SH:A 68.93 (c) 6.62 0.40 0.44 0.44 0.16 0.20 0.75 26,376.25

1The letters in parentheses after Δ𝐺 represent the significance groups (𝑝 < 0.05) across these selection strategies within a specific correlation.
2 𝑆𝐷Δ𝐺 is the standard deviation of Δ𝐺 across 1000 simulation runs.

strategy GS-SH:A and for intermediate levels of PA (=0.5)

and r (=0.15) (Table 3). Δ𝐺 increased by 1%, if the costs

of phenotyping Ta reduced from 1.4 to 0.7 €. An increase of

Δ𝐺 of 4 % was observed if the genotyping costs were reduced

from 40 to 15 €.

4 DISCUSSION

GS has been implemented in many commercial crop breed-

ing programs nowadays (Krishnappa et al., 2021). How-

ever, implementation of GS in clonally propagated species

is lagging behind, despite the expected advantages. This

might be on one side because genomic resources are less

developed in clonally propagated species compared to species

bred as hybrids or inbred lines. Furthermore, a lower number

of breeding methodological studies is dedicated to clon-

ally propagated crops compared to inbred or hybrid species.

Therefore, we evaluated the prospects to integrate GS into

commercial potato breeding programs and assessed which

parameters are crucial for its implementation.

4.1 Comparison of selection strategies

We have studied the implementation of GS in a standard clone

breeding program with minimal changes of the breeding pro-

gram. This procedure was chosen as we expect that this will be

the way how commercial clone breeding programs will deal

with this possibility or challenge. However, we are aware that

GS might result in even higher gains of selection if applied in

a less conservative setting where the possibilities of reducing

the length of breeding cycles are exploited. In addition, we

assumed in this study that a GS model has been trained for

the target trait on earlier cycles of the breeding program, and

thus, the prediction accuracy was given. However, to keep this

accuracy at a high level, the GS model should be re-trained

and updated at each new breeding cycle. One possibility is

that the clones selected as parents are used to update the GS

model. These aspects will be considered in a companion study.

In this study, all evaluated selection strategies that make

use of GS resulted in higher Δ𝐺 compared to the Standard-PS

strategy if other parameters such as budget, variance compo-

nents and selected proportions were held constant (Figure 3).
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WU ET AL. 11 of 14The Plant Genome

T A B L E 3 Optimum allocation of resources to maximize genetic gain of the target trait (Δ𝐺) across different cost scenarios when genomic

selection was applied in single hills and A clone stages (GS-SH:A). The correlation between the two traits was 0.15 and the prediction accuracy 0.5.

p1 to p5, α𝑘, and N1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic selection, and the number of clones

at the seedling stage, respectively.

𝐂𝐨𝐬𝐭𝐓𝐚
𝟏 𝐂𝐨𝐬𝐭 𝟏

𝐠𝐞𝐧𝐨 𝚫𝑮 𝟐
𝑺𝑫𝚫𝑮

𝟑 p𝟏 p𝟐 p𝟑 p𝟒 p𝟓 𝛂
𝒌

N𝟏

0.70 15 72.33 (a) 7.08 0.17 0.34 0.34 0.14 0.16 0.87 171,397.94

0.70 25 70.76 (c) 6.87 0.15 0.37 0.37 0.15 0.18 0.87 133,082.10

0.70 40 69.11 (e) 6.66 0.12 0.41 0.40 0.16 0.20 0.89 106,152.00

1.05 15 71.85 (ab) 7.00 0.20 0.35 0.36 0.14 0.17 0.88 135,898.99

1.05 25 70.39 (cd) 6.83 0.16 0.38 0.38 0.16 0.17 0.88 113,093.84

1.05 40 68.61 (ef) 6.57 0.15 0.40 0.41 0.18 0.19 0.87 87,752.05

1.40 15 71.39 (b) 6.95 0.23 0.35 0.37 0.14 0.17 0.88 110,223.57

1.40 25 69.96 (d) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54

1.40 40 68.41 (f) 6.52 0.17 0.41 0.41 0.16 0.21 0.90 76,796.40

1 CostTa
is the phenotyping cost of early measured trait, and Costgeno the genotyping cost per clone.

2The letters in parentheses after Δ𝐺 represent the significance groups (𝑝 < 0.05) across these cost scenarios.
3 𝑆𝐷Δ𝐺 is the standard deviation of Δ𝐺 across 1000 simulation runs.

This is in accordance with the theory about indirect selec-

tion response. This theory suggests that GS strategies should

be superior to the Standard-PS if PA > r ⋅𝐻Ta , keeping the

intensity of selection for GS (𝑖EGVTt
) and PS (𝑖Ta) equal.

Furthermore, the theory suggests that this trend should be

even more pronounced, if 𝑖Ta < 𝑖EGVTt
. This is what we

have observed in our simulations, namely that the difference

between Δ𝐺 of GS and PS was increased, if α𝑘 increases.

Among the examined strategies using GS in only one stage,

the ranking with respect to maximum Δ𝐺 was GS-SH > GS-

A > GS-SL, independently of PA, r, and α𝑘 (Figure 3). The

observation that GS-SH resulted in a higher Δ𝐺 than GS-

A can be explained by superiority of early selection on Tt
because thereby one can avoid discarding clones with top

performance for Tt in the early stages. Our observation of

an increased advantage of GS-SH over GS-A if r decreased

confirmed this explanation.

Following this argumentation, one could have expected

GS-SL to be the strategy with the highest Δ𝐺, especially if

r is negative. This is because a direct selection of seedlings

for EGVTt should be more efficient than selecting them based

on PTa that negatively correlated with TGVTt . Therefore,

the observation of GS-SL as the most disadvantageous GS

method (Figure 3) was surprising at a first glance. However,

in this strategy after one step of GS all further selection steps

are exclusively made based on PTa and this hampers the selec-

tion of those individuals with beneficial alleles for Tt . Thus,

the individuals with the highest TGVTt that were selected by

GS in the seedling stage are probably discarded in the follow-

ing selection steps from single hills to B clone stages. Another

explanation for the observation of GS-SL as the most disad-

vantageous GS method is that the selection of the seedling

stage based on GS leads to a dramatic reduction of population

size in the seedling stage to keep the budget constant despite

the burden of high genotyping costs (Figure S4). Our observa-

tions suggest that alternative prediction and selection methods

to GS need to be developed for the first stage of clone breeding

programs that result in a much lower cost per clone in order

to exploit the potential of predictive breeding.

Among all examined selection strategies, those that applied

GS several times are for all combinations of α𝑘, VC, and L

superior to the ones using GS in only one stage of the breed-

ing program (Figure 3), even without recalibrating the GS

model. This superiority is most probably due to the possi-

bility to select several times on EGVTt without having extra

genotyping costs.

Among the strategies that used GS multiple times, the high-

est Δ𝐺 was observed for the strategies GS-SL:SH:A and

GS-SH:A (Figure 3). The ranking of these two strategies

was influenced by the genetic situation. GS-SL:SH:A outper-

formed GS-SH:A under low r and high PA. Therefore, we

advice using GS-SL:SH:A in a very favorable GS environ-

ment (high PA and low r), and GS-SH:A in a favorable PS

environment (low PA and high r).

In the scenario discussed in the previous paragraph, the

selection intensities of the individual stages were kept equal

to those of the Standard-PS strategy. However, theoreti-

cal considerations suggest that the implementation of GS

requires an adaptation of the selection intensities as well

as the phenotyping intensities. These are discussed in the

next paragraph.

4.2 Optimal allocation of resources

We observed a significantly higher Δ𝐺 for the Optimal-PS

compared to the Standard-PS strategy (Figure 5). Smaller

values for p4 and p5 (i.e., higher selection intensities) in
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12 of 14 WU ET AL.The Plant Genome

Optimal-PS (0.10) were observed compared to those in

Standard-PS (0.20) (Table 2, Tables S2 and S3). This can

be explained by the fact that at the B and C clone stages,

the selection is exclusively based on PTt in a direct selection.

Therefore, when increasing the selection intensities in these

stages, Δ𝐺 is increasing as well.

The correlation between Ta and Tt also influences the opti-

mal selection intensity. We observed a higher p1, that is, a

lower selection intensity, when r= -0.15 compared to the sce-

nario with positive values for r (Table 2, Tables S2 and S3).

This can be interpreted such that in cases of a negative r, 𝑖Ta
needs to be reduced to avoid discarding too many clones based

on PTa that have a high TGVTt .

Furthermore, p𝑘 values were lower for those stages of the

breeding program at which GS was applied compared to the

same stage in a selection strategy without GS (Table 2, Tables

S2 and S3). The explanation for this observation can be that

a low number of clones are enough to identify those with

the best TGVTt if the more precise GS is applied. This find-

ing illustrates that either an increased prediction accuracy or

𝑖EGVTt
or both simultaneously can enhance Δ𝐺.

We observed for most considered simulation scenarios no

significant difference of Δ𝐺 between the Optimal-GS strate-

gies and Standard-GS strategies (Figures 3 and 5). However,

this comparison was not the purpose of our study. The simula-

tions with varying selection intensities required to fix the final

number of clones (N6). We have decided to fix N6 to that of the

Standard-PS in order to allow a fair comparison ofΔ𝐺. In con-

trast, the purpose of the simulations of the standard strategies

(PS but also GS) was based on keeping the selection intensi-

ties fixed between PS and GS strategies. The latter, however,

results in considerably lower numbers of clones at the D clone

stage (N6) which increases Δ𝐺 (cf. Longin et al., 2006).

The ranking of the optimized selection strategies with

respect to Δ𝐺 was with the exception of GS-SH and GS-A

identical to the one observed for the Standard-GS strategies

(Figure 5). One explanation for the rank change of GS-SH and

GS-A might be the stronger selection applied at A clone stage

in GS-A compared to GS-SH (Table 2, Tables S2 and S3).

This indicates that a higher selection intensity in a later stage

can improve Δ𝐺 more than an earlier selection on EGVTt .

4.3 Impact of novel technical developments
in the field of genomics or phenomics on the
selection strategy

Another possibility to increase the selection intensity for

improvement of short-term genetic gain is to generate more

selection candidates while keeping the number of selected

individuals constant (Cobb et al., 2019). Under a fixed bud-

get, a reduction of either genotyping or phenotyping costs

could increase the population size. With the development

of high-throughput phenotyping and genotyping techniques,

both their costs could gradually decrease (Araus & Cairns,

2014; Ragoussis, 2009). Consequently, we considered three

different levels of phenotyping and genotyping costs and

investigated how they affect the genetic gain in the context of

optimal allocation of resources with the strategy GS-SH:A.

The reduction of cost increased the population size at the

seedling stage as well as enhanced the selection intensities

p2 and p3 (when implementing GS), and p4 and p5 (direct

selection on Tt). The increasing Δ𝐺 value observed in our

study with a decrease in either genotyping or phenotyping cost

(Table 3) confirmed this hypothesis. Furthermore, our find-

ings are in line with a former study in wheat (Marulanda et al.,

2016), which showed an increased Δ𝐺 and a higher num-

ber of test candidates as the cost for hybrid seed production

or double haploids decreased. In summary, changes in cor-

relation between the two selected traits, prediction accuracy,

stage of implementation, and costs for genotyping and phe-

notyping have a crucial influence on the optimal allocation of

resources to maximize the short-term genetic gain, accentuat-

ing the necessity for clone and especially potato breeders to

regularly and carefully re-adjust their selection strategy.

4.4 Impact of GS on genetic variance

Not only the genetic gain is important for the evaluation of

the GS strategy, but also the genetic variance reduction of Tt .

As expected, all the selection strategies showed a decrease in

the genetic variance after selection (Figure S9). This tendency

increased when GS was implemented. This is in accordance

with former studies (Gaynor et al., 2017; Muleta et al., 2019)

which showed a greater loss of genetic variance over time

using GS compared to PS. In our study, the genetic vari-

ance decreased particularly at the stage of implementation

(𝑘), but not to the same extent for all strategies (Figure 3

and Figure S9). This trend can be explained by the Bulmer

effect (Bulmer, 1971), which reduces the proportion of genetic

variance due to linkage disequilibrium between trait coding

polymorphisms (Van Grevenhof et al., 2012). This is in accor-

dance with results of Jannink (2010), who showed that GS

can accelerate the fixation of favorable alleles for Tt com-

pared to PS resulting in a loss of genetic variance for the trait.

The reduction of genetic variance, however, limits the Δ𝐺
for long-term improvement. Therefore, maintaining diversity

of the population in the breeding materials is one possibil-

ity to slow down this drawback to improve long-term genetic

gain in breeding programs (Gorjanc et al., 2018). However,

for commercial breeding programs a balance between short-

and long-term gain of selection is required, which needs

further research.
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4.5 Conclusions

The present study demonstrated that implementing GS in a

typical clone breeding program improves the gain of selec-

tion even without exploiting the possibilities to reduce the

length of the breeding cycles. Furthermore, we showed that

the integration of GS in consecutive selection stages can

largely enhance the gain from selection compared to the

use in only one stage. In detail, the strategy GS-SL:SH:A

is highly recommended if the correlation between Ta and

Tt is negative. Otherwise, GS-SH:A can be the most effi-

cient strategy. However, with the consideration of optimal

resource allocation, the superiority of multiple GS over sin-

gle GS is not obvious anymore and their ranking depends on

PA and r. Furthermore, we observed that the implementation

of GS in potato breeding programs requires the adjustment

of the selection intensities as well as the phenotyping inten-

sities compared to those typically used in breeding programs

exploiting exclusively PS. Finally, we outlined how to adjust

the selection intensities in potato breeding programs after

implementing GS.
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